
Week 7 - Friday

 What did we talk about last time?
 Therac-25
 Malicious code
 Viruses

 The Brain virus is one of the oldest known
 It changed the label of disks it attacked to "BRAIN"
 It was written by two brothers from Pakistan

 It copies itself to the boot sector in MS-DOS
 It rewrites the system interrupt for disk reading so that it

controls reads
 If you try to look at the boot sector, it will lie to you about what's

there
 Anytime it sees an uninfected disk, it infects it
 It doesn't otherwise do anything malicious

 In 1988 Robert Morris, a Cornell graduate student, wrote an
worm that infected a lot of the Internet that existed at that
time

 Serious connectivity issues happened because of the worm
and because people disconnected uninfected systems

 He claimed the point was the measure the size of the Internet
 The worm's goal:

1. Determine where it could spread to
2. Spread its infection
3. Remain undiscovered

 It tried to find user accounts on the host machine
 It tried 432 common passwords and compared their hash to the list

of password hashes
 Ideally, this list should not have been visible

 It tried to exploit a bug in the fingerd program (using a
buffer overflow) and a trapdoor in the sendmail mail
program
 Both were known vulnerabilities that should have been patched

 Once a target was found, the worm would send a short loader
program to the target machine

 The program (99 lines of C) would compile and then get the
rest of the virus

 It would use a one-time password to talk to the host
 If the host got the wrong password, it would break connection
 This mechanism was to prevent outsiders from gaining access

to the worm's code

 Any errors in transmission would cause the loader to delete
any code and exit

 As soon as the code was successfully transmitted, the worm
would run, encrypt itself, and delete all disk copies

 It periodically changed its name and process identifier so that
it would be harder to spot

 The worm would ask machines if they were already infected
 Because of a flaw in the code, it would reinfect machines 1 out of 7

times
 Huge numbers of copies of the worm started filling infected

machines
 System and network performance dropped

 Estimates of the damage are between $100,000 and $97 million
 Morris was fined $10,000 and sentenced to 400 hours of community

service
 The CERT was formed to deal with similar problems

 Code Red appeared in 2001
 It infected a quarter of a million systems in 9 hours
 It is estimated that it infected 1/8 of the systems that were

vulnerable
 It exploited a vulnerability by creating a buffer overflow in a

DLL in the Microsoft Internet Information Server software
 It only worked on systems running a Microsoft web server, but

many machines did by default

 The original version of Code Red defaced the website that was
being run

 Then, it tried to spread to other machines on days 1-19 of a
month

 Then, it did a distributed denial of service attack on
whitehouse.gov on days 20-27

 Later versions attacked random IP addresses
 It also installed a trap door so that infected systems could be

controlled from the outside

 Write modular code
 Robust independent components

 Components should meet the following criteria:
 Single-purpose: Perform one function
 Small: Short enough to be understandable by a single human
 Simple: Simple enough to be understandable by a single human
 Independent: Isolated from other modules

 Modular components have many advantages
 Maintenance
 It's easy to replace a modular component

 Understandability
 It's easier to understand a large system made out of simple components

 Reuse
 Modular components can be reused in other code

 Correctness
 It's easy to see which component is failing

 Testing
 Each component can be tested exhaustively on its inputs and outputs

 Components should hide their implementation details
 Only the smallest number of public methods should be kept to

allow them to interact with other components
 This information hiding model is thought of as a black box
 For both components and programs, one reason for

encapsulation is mutual suspicion
 We always assume that other code is malicious or badly written

 Unit testing tests each component separately in a controlled
environment

 Integration testing verifies that the individual components work
when you put them together

 Regression testing is running all tests after making a change,
verifying that nothing that used to work is now broken

 Function and performance tests sees if a system performs
according to specification

 Acceptance testing give the customer a chance to test the
product you have created

 The final installation testing checks the product in its actual use
environment

 Saltzer and Schroeder wrote an important paper in 1975 that gave eight
principles that should be used in the design of any security mechanisms
1. Least privilege
2. Fail-safe defaults
3. Economy of mechanism
4. Complete mediation
5. Open design
6. Separation of privilege
7. Least common mechanism
8. Psychological acceptability

 These principles will be part of Project 3

 The principle of least privilege states that a subject should be
given only those privileges that it needs in order to complete its
task

 This principle restricts how privileges are granted
 You're not supposed to get any more privileges than absolutely

necessary
 Examples
 Banner
 Unix systems
 Windows systems?

 The principle of fail-safe defaults states that, unless a subject
is given explicit access to an object, it should be denied access
to an object

 This principle restricts how privileges are initialized
 A subject should always be assumed not to have access
 Examples
 Airports
 Unix systems
 Windows systems?

 The principle of economy of mechanism states that security
mechanisms should be as simple as possible

 This principle simplifies the design and implementation of security
mechanisms

 The more complex a system is, the more assumptions that are
built in

 Complex systems are hard to test
 Examples
 Die Hard
 Houdini

 The principle of complete mediation requires that all access
to objects be checked to ensure that they are allowed

 This principle restricts the caching of information (and also
direct access to resources)

 The OS must mediate all accesses and make no assumptions
that privileges haven't changed

 Examples
 Banks
 Unix systems

 The principle of open design states that the security of a
mechanism should not depend on the secrecy of its design or
implementation

 "Security through obscurity" fallacy
 Examples
 Enigma
 RSA
 Lock-picking

 The principle of separation of privilege states that a system
should not grant permission based on a single condition

 Security should be based on several different conditions (perhaps
two-factor authentication)

 Ideally, secure mechanisms should depend on two or more
independent verifiers

 Examples
 Nuclear launch keys
 PhD qualifying exams
 Roaccutane (used to be Accutane)

 The principle of least common mechanism states that
mechanisms used to access resources should not be shared

 Sharing allows for channels for communication
 Sharing also lets malicious users or programs affect the

integrity of other programs or data
 Examples
 Virtual memory
 File systems

 The principle of psychological acceptability states that security
mechanisms should not make the resource (much) more difficult
to access than if the security mechanisms were not present

 Two fold issues:
 Users must not be inconvenienced or they might fight against the system

or take their business elsewhere
 Administrators must find the system easy to administer

 Examples
 Windows UAC
 Retina scans
 Changing your password all the time

 Top 10 Secure Coding Practices from the CERT
1. Validate input
2. Heed compiler warnings
3. Architect and design for security policies
4. Keep it simple
5. Default to deny
6. Adhere to the principle of least privilege
7. Sanitize data sent to other systems
8. Practice defense in depth
9. Use effective quality-assurance techniques
10. Adopt a secure coding standard

 Penetration testing is when a team that didn't design or
implement the software tries to break into it

 Also called tiger team analysis or ethical hacking
 It's a great tool, but there's no guarantee it will work quickly
 Also, there's no guarantee that all vulnerabilities will be found
 The Google Vulnerability Reward Program (VRP) is a crowd-

sourcing approach to penetration testing Google
 You can make $200 to $101,010 per vulnerability you find

 It is possible to prove that some programs do specific things
 You start with a set of preconditions
 You transform those conditions with each operation
 You can then guarantee that, with the initial preconditions, certain

postconditions will be met
 Using this precondition/postcondition approach to formally describe

programming languages is called Hoare semantics
 Proving things about complex programs is hard and requires

automated use of programs called theorem provers

 Validation is checking the design against the requirements
 Verification is checking the implementation against the design

 Program validation is often done in the following ways:
 Requirements checking
 Design and code reviews
 System testing

 Defensive programming assumes any input could be bad
 Types of input to watch out for:
 Value inappropriate for data type
 Value out of range
 Value unreasonable
 Value out of scale or proportion (similar to unreasonable)
 Incorrect number of parameters
 Incorrect order of parameters

 Programming by contract is related to formal verification
 Each module of code should have preconditions, postconditions,

and invariants
 One way to check that conditions are not met is with an assertion
 Assertions are statements in a language that will throw an error if

they are not true

double findHypotenuse(double a, double b) {
assert a > 0 && b > 0; // Assertions must be on
return Math.sqrt(a*a + b*b);

}

 Penetrate-and-patch
 Fixing a fault can have non-obvious side-effects
 Focusing too narrowly on one fault may ignore deeper problems
 Fixing a problem isn't workable because of performance

 Security by obscurity
 Example: don't tell people what encryption algorithm is being used
 If internals leak out, security is useless

 A perfect bad code detector
 Impossible because of the halting problem

 Web security
 Obtaining user or website data
 E-mail attacks
 OS background
 Hussein Alani presents

 Reading section 4.1 – 4.4
 Work on Assignment 3
 Work on Project 2

	COMP 4290
	Last time
	Questions?
	Assignment 3
	Project 2
	Virus Case Studies
	Brain virus
	The Internet Worm
	Determining where to spread
	Spreading infection
	Remain undiscovered
	What happened
	Code Red
	Versions
	Countermeasures
	Countermeasures for developers
	Modularity
	Encapsulation
	Testing
	Secure design principles
	Principle of least privilege
	Principle of fail-safe defaults
	Principle of economy of mechanism
	Principle of complete mediation
	Principle of open design
	Principle of separation of privilege
	Principle of least common mechanism
	Principle of psychological acceptability
	Secure coding practices
	Penetration testing
	Formal verification
	Validation
	Defensive programming
	Design by contract
	Countermeasures that don't work
	Ticket out the Door
	Upcoming
	Next time…
	Reminders

